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We present a generalization of the often-used Crank-Nicolson �CN� method of obtaining numerical solutions
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��x�2r−1 in space and ��t�2M in time for any positive integers r and M, while CN employ r=M =1. We note
dramatic improvement in the attainable precision �circa ten or greater orders of magnitude� along with several
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of coherent-state oscillations with additional short-range interactions, wave-packet scattering, and long-time
studies of decaying systems.
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I. INTRODUCTION

Whereas there are a number of examples of exact analytic
solutions of time-independent problems in quantum mechan-
ics, such solutions of time-dependent problems are few. The
analytic solutions of both types that do exist tend to provide
approximate models to actual physical systems. No doubt
such solutions are instructive for gaining insight into the be-
havior of the physical systems that they describe. Neverthe-
less, because the models themselves are often approxima-
tions and because one wishes to describe real systems as
precisely as possible, one also relies on accurate numerical
methods.

The time dependence of nonrelativistic quantum systems,
which is the focus of this paper, has become important in
diverse areas of atomic and subatomic physics. Examples of
these include the study of nuclear processes such as the de-
cay of unstable nuclei and associated phenomena like atomic
ionization �1,2� and bremsstrahlung �3–5�, the study of fun-
damental processes necessary for quantum computing �6�,
the study of mesoscopic physics or nanophysics devices �7�,
and the motion of atoms in a trap. A reliable and accurate
numerical determination of the time-dependent wave func-
tion such as we discuss in this paper will no doubt be nec-
essary and/or helpful in making advances in the understand-
ing of a variety of quantum processes.

In this paper we consider the numerical solution of the
time-dependent nonrelativistic Schrödinger equation. We as-
sume that the Hamiltonian �or the interaction potential� does
not depend on time. Much has been learned about basic scat-
tering processes from the numerically generated solutions of
traveling wave packets as they pass through a potential re-
gion �8�, as well as the time evolution of unstable quantum
processes �9�. However, the methods used in the past, and
still employed currently, are limited in that the solutions of-

ten degrade after a certain time interval, so that they reduce
to noise. Furthermore, for processes in which the wave func-
tion spreads or travels away from the source one often re-
quires such a large number of space steps that the computa-
tion becomes prohibitive.

The goal of this study is to improve the existing standard
approach by allowing for relatively large step sizes both in
time and in space and thus to reduce the number of basic
arithmetical calculations while obtaining more accurate solu-
tions. We have been able to make significant improvement to
one conventional approach, viz. the Crank-Nicolson �CN�
implicit integration scheme for the time-dependent
Schrödinger equation. Many years ago the CN approach was
shown to be successful in the study of wave-packet scatter-
ing in one dimension by Goldberg et al. �8�. In recent years
the CN method continues to be employed for its space-
and/or time-development algorithm to study various time-
dependent problems; see, for example, Refs. �10–13�. The
attractive aspect of this method is that the solution is con-
strained to be unitary at every time step. It is this constraint
that makes the solution stable regardless of time- or space-
step size. Although the evolution of the solution is unitary,
the wave function is not correct if the step sizes are too large.
The error is of O(��x�2 , ��t�3), where �x and �t are the
spatial and temporal step size, respectively.

The method was successfully generalized to two dimen-
sional scattering by Galbraith et al. �14� and, more recently,
to multichannel scattering �15�. Furthermore, alternative
methods which are fast computationally were introduced by
Kosloff and Kosloff �16�. These involve the fast Fourier
transform of the kinetic energy operator of the Schrödinger
equation. Variants of this method were discussed in Ref.
�17�. Although this approach is fast and is able to handle
large time intervals in one pass, it is not unitary and does
require a large number of space intervals.

Improved CN algorithms have been discussed by a few
authors. Mişucu et al. �5� introduced a seven-point formula
for the second-order spatial derivative with error of O(��x�6)
and an improved time-integration scheme with an error of
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O(��t�5). They claim to obtain two orders of magnitude im-
provement in the time advance. Moyer �18� uses a Numerov
scheme for the spatial integration method with error of
O(��x�6) but has a one-stage time evolution giving the CN
precision in time, i.e., with an error of O(��t�3). Moyer also
introduces transparent boundary conditions for unconfined
systems. We have found these very useful for making long-
time or large-space problems tractable �7�, but we will not
discuss such boundary conditions further in this paper. Puzy-
nin et al. �19,20� indicate how to generalize the time devel-
opment to higher order, but do not discuss spatial integration.

In this paper we present a generalization of the often-used
CN method of obtaining numerical solutions of the time-
dependent Schrödinger equation. The generalization yields
numerical solutions accurate to order ��x�2r−1 in space and
��t�2M in time for any positive integers r and M, while the
CN method employs r=M =1. By appropriate choice of r
and M the improvement can be of such a nature that hitherto
computationally unfeasible problems become doable, and so-
lutions with low to modest precision can now be obtained
extremely accurately.

In the following we consider the generalization of spatial
integration in Sec. II and the generalization of the time inte-
gration in Sec. III. In Sec. IV we discuss errors and a way of
dealing with a particular type of boundary condition. We
study specific examples to illustrate the improvement of the
generalizations over the standard CN procedure in Sec. V.
Some general observations and conclusions are made in Sec.
VI.

II. SPATIAL INTEGRATION

We describe a general procedure for solving the one-
dimensional time-dependent Schrödinger equation

�i�
�

�t
− H���x,t� = 0, ��x,t0� = ��x� , �2.1�

where the time-independent Hamiltonian is

H = −
�2

2m

�2

�x2 + V�x� , �2.2�

and ��x� is a given wave function at initial time t0. In this
section we use the standard time-advance procedure of the
CN method, but generalize the spatial integration. In Sec. III
we generalize the time-evolution procedure.

The time evolution of the system can be expressed in
terms of an operator acting on the wave function at time t
which gives the wave function at a later time t+�t according
to the equation

��x,t + �t� = e−iH�t/���x,t� . �2.3�

The time-evolution operator e−iH�t/� can be expanded to give
a unitary approximation of the operator by setting

e−iH�t/� =
1 − �1/2�iH�t/�

1 + �1/2�iH�t/�
+ O„��t�3

… . �2.4�

Inserting the approximate form of the operator into Eq. �2.3�,
we obtain the equation

�1 +
1

2
iH�t/����x,t + �t� = �1 −

1

2
iH�t/����x,t� ,

�2.5�

with an error of O(��t�3). Here we focus on the second-order
spatial derivative in H of Eq. �2.2� and leave improvements
with respect to the time derivative to Sec. III. We generalize
the usual three-point formula and the seven-point formula of
Mişicu et al. �5�, for the second-order derivative to a �2r
+1�-point formula. Such a formula has the form

y��x� � y�2� =
1

h2 �
k=−r

k=r

ck
�r�y�x + kh� + O�h2r� , �2.6�

where ck
�r� are real constants. To obtain the coefficients ck

�r�

we make expansions

y�x + kh� = y�x� + �kh�y�1��x� +
1

2!
�kh�2y�2��x� + ¯

+
1

�2r + 1�!
�kh�2r+1y�2r+1��x� + O�h2r+2� ,

y�x − kh� = y�x� − �kh�y�1��x� +
1

2!
�kh�2y�2��x� − ¯

+
�− 1�2r+1

�2r + 1�!
�kh�2r+1y�2r+1��x� + O�h2r+2� ,

for k=1,2 , . . . ,r; y�i� denotes the ith derivative with respect
to x. When we add the two equations, the terms with odd-
order derivatives cancel, resulting in the equation

2
�kh�2

2!
y�2��x� + 2

�kh�4

4!
y�4��x� + ¯ + 2

�kh�2r

�2r�!
y�2r��x�

= y�x + kh� + y�x − kh� − 2y�x� + O�h2r+2� . �2.7�

Thus we obtain the system of r equations in r unknowns, i.e.,
y�2k��x� for k=1, . . . ,r,

2
�h�2

2!
y�2��x� + 2

�h�4

4!
y�4��x� + ¯ + 2

�h�2r

�2r�!
y�2r��x�

= y�x + h� + y�x − h� − 2y�x� ,

2
�2h�2

2!
y�2��x� + 2

�2h�4

4!
y�4��x� + ¯ + 2

�2h�2r

�2r�!
y�2r��x�

= y�x + 2h� + y�x − 2h� − 2y�x�

]

2
�rh�2

2!
y�2��x� + 2

�rh�4

4!
y�4��x� + ¯ + 2

�rh�2r

�2r�!
y�2r��x�

= y�x + rh� + y�x − rh� − 2y�x� . �2.8�

We solve these equations to obtain y�2��x�. It is evident
from the terms on the right side of Eqs. �2.8� that y�2��x� has
the form of Eq. �2.6� and the coefficients ck

�r� can be identi-
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fied. Because Eqs. �2.8� are invariant under the change of h
to −h, the coefficients satisfy the relation c−k

�r�=ck
�r� for k

=1,2 , . . . ,r. For example, the first seven sets of coefficients
�up to the 15-point formula� are given in Table I.

Let us partition the range of x and t values so that xj
=x0+ j�x, j=0,1 , . . . ,J and tn= t0+n�t, n=0,1 , . . . ,N. The
numerical approximation of the wave function at a mesh
point in space and time is denoted as � j,n	��xj , tn� and we
set Vj =V�xj�. Using expression �2.6� in Eq. �2.5�, we obtain

� j,n+1 −
i��t

4m��x�2
�
k=−r

k=r

ck
�r�� j+k,n+1� +

i�t

2�
Vj� j,n+1

= � j,n +
i��t

4m��x�2
�
k=−r

k=r

ck
�r�� j+k,n� −

i�t

2�
Vj� j,n,

�2.9�

for j=0 to J. The indices in the sums may go out of range, so
we set � j,n=0 when j�0 and j�J. Define

b �
i��t

2m��x�2 , z1
�1� � − 2, and ak

�r� �
b

z1
�1�ck

�r�,

�2.10�

and subsequently

dj � 1 + a0
�r� −

i�t/�

z1
�1� Vj, j = 0,1, . . . ,J . �2.11�

The notation includes z1
�1� which is consistent with that used

in the generalization of the time dependence of the wave
function discussed in the next section.

The solution � j,n+1 is obtained by solving the system of
linear equations

A�n+1 = A*�n, �2.12�

where the matrix A is the �2r+1�-diagonal matrix,

A =�
d0 a1 a2 ¯ ar 0

a1 d1 a1 ¯ ar−1 ar

a2 a1 d2 ¯ ar−2 ar−1

] ] ] ] ]

ar ar−1 ar−2 ¯ dr a1

0 ar ar−1 ¯ a1 dr+1

�

dJ−1 a1

a1 dJ

 ,

�2.13�

where the superscript �r� of the ak is assumed. The matrix A*

is the complex conjugate of matrix A. The wave function at
tn+1, i.e., �n+1, is a column vector consisting of the � j,n+1 as
components, and can be determined if �n is known. The
matrix equation �2.12� can be solved using standard tech-
niques.

III. TIME ADVANCE

In this section we extend the work of Puzynin et al.
�19,20�. The basic idea is to replace the exponential operator
exp�−iH�t� by the diagonal Padé approximant. The �M /M�
Padé approximant of the exponential function may be written
as

f�z� = ez =
a0 + a1z + ¯ + aMzM

b0 + b1z + ¯ + bMzM =

�
m=0

M

amzm

�
m�=0

M

bm�z
m�

, �3.1�

where the am and the bm� are complex constants. It is evident
that when z=0, a0 /b0=1, which makes one of the coeffi-
cients arbitrary. By convention we take b0=1 which imme-
diately fixes a0=1. There are 2M constants remaining, which
can be found from the known coefficients of the series ex-
pansion of the exponential function, giving an error term in
Eq. �3.1� O�z2M+1�. The property of Padé approximants that
can be used to advantage is that, if f�z� is unitary, so is its
diagonal Padé approximant �21�.

In general we solve for the coefficients am and bm� by
multiplying Eq. �3.1� by the denominator so that

� �
m�=0

M

bm�z
m����

i=0

	

ciz
i� = ��

m=0

M

amzm� , �3.2�

where the ci are known since ez=�i=0
	 zi / i!. Multiplying out

the sums on the left side of Eq. �3.2�, and equating the coef-
ficients of z through z2M on both sides, we obtain 2M equa-
tions in 2M unknowns. The last M of these equations contain
no am and hence can be solved for the bm�, which in turn can
be inserted in the first M equations to obtain the am. The
numerator and the denominator of the diagonal Padé approx-
imant of the exponential function have been studied exten-
sively �21�. When each is factored it is found that the roots of

TABLE I. The coefficients ck
�r� up to r=7.

r k=0 1 2 3 4 5 6 7

1 −2 1

2 −
5

2

4

3
−

1

12

3 −
49

18

3

2
−

3

20

1

90

4 −
205

72

8

5
−

1

5

8

315
−

1

560

5 −
5269

1800

5

3
−

5

21

5

126
−

5

1008

1

3150

6 −
5369

1800

12

7
−

15

56

10

189
−

1

112

2

1925
−

1

16632

7 −
266681

88200

7

4
−

7

24

7

108
−

7

528

7

3300
−

7

30888

1

84084
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the denominator are the negative complex conjugates of the
roots of the numerator. Thus the �M /M� Padé approximant
of the exponential function leads to

ez = �
s=1

M �1 − z/zs
�M�

1 + z/z̄s
�M�� + O�z2M+1� , �3.3�

where zs
�M� ,s=1, . . . ,M, are the roots of the numerator, and

z̄s
�M� is the complex conjugate of zs

�M�. These roots can be
found to a desired precision for virtually any value of M. We
have found them to 17 digit precision for M up to 20, a
sample of which for M =1–5, each rounded to five decimal
places, is given in Table II.

We use the Padé approximant to express the time evolu-
tion operator. Define the operator

Ks
�M� �

1 − �iH�t/��/zs
�M�

1 + �iH�t/��/z̄s
�M� , �3.4�

so that

e−iH�t/� = �
s=1

M

Ks
�M� + O„��t�2M+1

… . �3.5�

The decomposition of the time-evolution operator in this
way is possible because the Hamiltonian does not depend on
time. Since �n+1=e−iH�t/��n, we write the relation

�n+1 = �
s=1

M

Ks
�M��n. �3.6�

Defining �n+s/M �Ks
�M��n+�s−1�/M, we can solve for �n+1 re-

cursively, starting with

�n+1/M = K1
�M��n. �3.7�

Assuming that �n is known, we determine �n+1/M from Eq.
�3.7� which has a form similar to that of Eq. �2.5�. We use
therefore the same method of Sec. II to obtain �n+1/M. This
is repeated to obtain in succession
�n+2/M ,�n+3/M , . . . ,�n+�M−1�/M ,�n+1. Since the operators
Ks

�M� commute, they can be applied in any order.

IV. DISCUSSION OF ERRORS
AND BOUNDARY CONDITIONS

A. Errors

In this section we discuss the errors as a function of the
orders of the method, i.e., r and M. Let us separate the trun-

cation errors due to the integration over space and those due
to integration over time. At a given time t the spatial integra-
tion with the rth-order expansion yields a truncation error

e�r� = C�r���x�2r, �4.1�

where C�r� is assumed to be slowly varying with r. Actually
C�r�= ���2r��x* , t�� / �2r!� for some x* in the range of spatial
integration, and thus is model dependent. If we specify an
acceptable error, the step size �x can be adjusted to obtain
that error. Since �x= �x0−xJ� /J, an adjustment of �x is
equivalent to a change in J. Recalling that x0−xJ is fixed, we
obtain

�x =
x0 − xJ

J
= � e�r�

C�r��1/2r

, �4.2�

and

e�r� 	
const

J2r . �4.3�

We have assumed that C�r� is approximately constant. The
CPU time for the calculation is proportional to the number of
basic computer operations in solving the matrix equation
�2.12�. This involves elementary row operations on r−1
rows in J−1 columns to bring the matrix to upper triangular
form, plus J back substitutions to obtain the solution. Hence

CPU time 
 number of operations 
 Jr 

r

�e�r��1/2r .

�4.4�

This form gives a minimum �optimum� CPU time which
occurs when

r 	 −
ln e�r�

2
. �4.5�

For the time integration we assume a truncation error in-
dependent of r. For a given r the error due to finite �t has a
first term in the expansion

e�M� = C�M���t�2M+1, �4.6�

where again C�M� is assumed to be a slowly varying function
of M. We note that the factor 1

2 in the numerator and denomi-
nator of Eq. �2.4� is replaced by 1/zs

�M� in each of the M
factors �3.4� of Eq. �3.5�. As M increases the average over
different values of s of �zs

�M��, which we denote as zavge
�M� , also

increases. In fact zavge
�M� is a linear function of M as is seen in

Fig. 1. The effective expansion parameter can be approxi-

TABLE II. The roots zs
�M� of the numerator of the Padé approximant of the exponential function for M from 1 to 5.

M s=1 2 3 4 5

1 −2.00000+ i0.00000

2 −3.00000+ i1.73205 −3.00000− i1.73205

3 −4.64437+ i0.00000 −3.67781− i3.50876 −3.67781+ i3.50876

4 −4.20758+ i5.31484 −5.79242+ i1.73447 −5.79242− i1.73446 −4.20758− i5.31483

5 −4.64935+ i7.14205 −6.70391+ i3.48532 −7.29348+ i0.00000 −6.70391− i3.48532 −4.64935− i7.14205
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mated by 2�t /zavge
�M� rather than �t and hence is proportional

to �t /M. Thus we can replace the relation of Eq. �4.6� by

e�M� 	 C�M���t/M�2M+1, �4.7�

where the constant C�M� is appropriately adjusted. If we take
the total time tmax=N�t to be fixed, then

CPU time 
 �e�M��−1/�2M+1�. �4.8�

In Fig. 2 the curves of the �scaled� CPU times are plotted.
Both curves clearly show the sharp decline when r ,M in-
creases from 1 through 5 or larger. For increasing M the CPU
time continues to decline although the decrements become
smaller at larger M. For increasing r there is a minimum
depending on the specified error and beyond the minimum
the curve shows a slow increase with increasing r. Superim-
posed on the curves are the CPU times �as dots� of a model
calculation �see Sec. V A�, in which the numerical and exact
solutions can be compared. Clearly the theoretical trends,
including the minimum as a function of r, occur in the com-
puted example. It should be noted that it “pays” to increase

M indefinitely, whereas there is an optimum value of r which
depends on the magnitude of e�r�.

B. Boundary conditions

Below Eq. �2.9� we indicate that we set � j,n=0 when j
�0 or j�J, or when j goes out of range. These are appro-
priate boundary conditions when the wave function and its
first r+1 derivatives are zero at the boundaries, since it was
assumed in the derivation of the method that all these deriva-
tives exist. If, however, that is not the case, for instance, at
the boundary of an �in�finite square well or barrier where the
second-order derivative does not exist, one must devise ways
of incorporating the proper boundary conditions.

One case of importance, which we discuss in the third
example �see Sec. V C� of the paper, is the case of radial
behavior of a partial wave when angular momentum decom-
position has been done. In the S-wave case the wave func-
tion, defined only for nonnegative values of the radial coor-
dinate, is zero at the origin but the first derivative is finite.
Muller �22� discusses a related, but not identical, situation.
He considers three-point formulas for the Coulomb potential
which lead to a radial wave function which is zero when the
radial variable �=0, but has first and second derivatives
which are nonzero at �=0. His approach can be adapted to
the �2r+1�-point formula of this work.

We treat this case by making the ansatz that the wave
function behaves like an odd function about the origin and
continues in the unphysical region of the negative radial vari-
able. With this assumption we do not affect the behavior of
the system at positive values of the radial variable, but all the
required derivatives exist. Furthermore, the wave function at
negative j values can be combined with the ones with corre-
sponding positive j values, so that the space need not be
enlarged but instead the first few matrix elements of the ma-
trix A can be changed to account for the boundary condition.
This is achieved by replacing A by A�=A−B in Eq. �2.13�
where

B =�
0 a1 a2 a3 ¯ ar−2 ar−1 ar 0 ¯

0 a2 a3 a4 ¯ ar−1 ar 0 0 ¯

0 a3 a4 a5 ¯ ar 0 0 0 ¯

] ] ] ] ] ] ] ]

0 ar−1 ar 0 ¯ 0 0 0 0 ¯

0 ar 0 0 ¯ 0 0 0 0 ¯

0 0 0 0 ¯ 0 0 0 0 ¯

] ] ] ] ] ] ] ]

 .

�4.9�

A hard-core type potential could be dealt with in the same
way. Different forms of boundary conditions are more com-
plicated to implement, but Ref. �22� suggests an approach to
including such boundary conditions. For the purpose of the
radial wave function of a nonsingular potential, the above
approach is sufficient.

V. EXAMPLES

We consider three systems to which this numerical
method may be applied. The first two allow us to make a

FIG. 1. �Color online� The average, the minimum and the maxi-
mum values of ��zs

�M�� ,s=1¯M�, as a function of M.

FIG. 2. �Color online� The normalized theoretical variation of
the CPU time for a given error of 1.0�10−8. The calculated CPU
times for the example of Sec. V A are shown as dots.
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comparison with the exact solution and to test the precision
of the numerical procedure. The third involves the time evo-
lution of a quasistable quantum process.

A. Oscillation of a coherent wave packet

The oscillation of a coherent state in the harmonic oscil-
lator well is described in Ref. �23�. The time evolution of
such states has been discussed recently in connection with
the quantum abacus �see Ref. �6��. In that case there is a
point interaction at the center of the oscillator well. It is of
interest to consider narrow but finite-range interactions to
simulate more realistic physical systems. In order to test the
robustness of the quantum gates one needs a very stable nu-
merical procedure. We test the precision of the numerical
procedure by investigating the case without the central inter-
action, so that the numerical results can be compared with
the exact ones.

The time-dependent Schrödinger equation is

i�
�

�t
��x,t� = �−

�2

2m

�2

�x2 +
1

2
Kx2���x,t� . �5.1�

We consider the time evolution of the initially displaced
ground-state wave function

��x,0� =
1/2

�1/4e−�1/2�2�x − a�2
, �5.2�

where 4=mK /�2, �=�K /m, and a is the initial displace-
ment. The closed expression for the time evolved wave func-
tion is

�exact =
1/2

�1/4 exp
−
1

2
�� − �0 cos �t�2

− i�1

2
+ ��0 sin �t −

1

4
�0

2 sin 2�t�� , �5.3�

where �=x and �0=a. We set �=m=1, �=0.2, and a
=10. We choose our space such that x� �x0 ,xJ�= �−40,40�.
The period of oscillation is then T=10�. We allow the co-
herent state to oscillate for 11 periods before comparing the
numerical solution to the exact one. The error is calculated as
e2 using the formula �19�

�e2�2 = �
x0

xJ

dx���x,t1� − �exact�x,t1��2, �5.4�

where t1=11T for our example. The results including the
relative CPU time �34� are displayed in Table III.

In the above tests we have tried to obtain a precision
better than 10−8. While varying the number of steps for the
spatial integration, we kept the number of time factors per
time step constant at 20. Given that the total space is fixed
and spans 80 units, we adjusted the number of spatial steps J
to give the required precision. We limited �arbitrarily� the
maximum number of spatial steps to 2100. With M =20 the
15-point formula �r=7� is most efficient. When r�4 �less
than nine-point formula�, we were unable to reach the preci-
sion criterion because of the imposed limit on J. It is clear

from the trend, however, that the efficiency is significantly
less for the lower r values. The nine-point formula is roughly
half as efficient as the 15-point formula.

The effect of different order time formulas as seen in the
lower part of Table III is even more dramatic. For the spatial
integration we used the 21-point formula �r=10�, and varied
the time-order formula, i.e., M, from 20 to 1. We see at least
two orders of magnitude improvement in computational
speed as M is increased over this range.

A comparison with the standard CN approach �r=M =1�
is instructive. We considered the same system with x0=−25
and xJ=25, �x=0.005 and �t=0.5��x�2. The standard CN
method yielded an error of e2=7.1�10−5 when t=T /4 which
increased exponentially to e2=2.7�10−3 at t=10T. Whereas
the CPU time in Table III is given in seconds, the CPU time
required to complete this last calculation exceeded 24 h.

The computed CPU times shown in Fig. 2 exceeded the
“theoretic” values by increasing amounts as r increased be-
yond 10. This can be attributed to the approximate nature of
the error analysis in which the model dependence of C�r�

�and C�M�� was neglected. In this example a more elaborate
analysis could be done since the wave function is known
analytically. In practical situations where a numerical method
is used the analytic wave function is usually not known and
an estimate such as we have given here would be all that is
available. The main point is that dramatic improvements re-
sult both theoretically and computationally when larger val-
ues of r and M are employed.

B. Propagation of a wavepacket

For this example we return to the work of Ref. �8� and
consider the main features of that analysis with a view of

TABLE III. Summary of computational time and errors incurred
by using the numerical integration procedure when the initial wave
function is the displaced ground state. The last column indicates a
relative CPU run time. The upper half of the table gives the effects
of changing the number of spatial steps; the lower half the effects of
changing the number of time steps.

M r �t �x J e2 CPU time

20 20 � 0.44444 180 6.717�10−9 18.38

20 15 � 0.38095 210 7.044�10−9 14.23

20 10 � 0.27586 290 7.506�10−9 10.84

20 7 � 0.18182 440 9.353�10−9 10.12

20 5 � 0.09877 810 9.330�10−9 12.83

20 4 � 0.05755 1390 9.871�10−9 18.61

20 3 � 0.03810 2100 2.102�10−7 23.67

20 2 � 0.03810 2100 1.624�10−4 18.42

20 1 � 0.03810 2100 1.749�10−1 13.75

20 10 � 0.26667 300 5.106�10−9 10.77

15 10 � /1.5 0.26667 300 5.153�10−9 12.13

10 10 � /3 0.26667 300 4.995�10−9 16.16

5 10 � /15 0.26667 300 8.787�10−9 40.42

3 10 � /150 0.26667 300 1.840�10−9 242.9

1 10 � /3000 0.26667 300 5.046�10−4 1627
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determining the improvement brought about by the generali-
zations of this paper. This problem was revisited by Moyer
�18� to illustrate the efficacy of the Numerov method and the
use of transparent boundary conditions for the propagation of
free-particle wave packets. The authors of Ref. �8� consider
wave packets impinging on a square barrier and study their
behavior in time. We consider first free wave-packet propa-
gation �without potential�, and second the reflection and

transmission of a wave packet by a smooth potential.
Thus we first assume V�x�=0 and take as initial wave

function

��x,0� = �2��0
2�−1/4eik0�x−x0�e−�x − x0�2/�2�0�2

. �5.5�

�Note that our �0 is that of Ref. �8� divided by �2.� The wave
function at later time is given by

��x,t� = �2��0
2�−1/4�1 + i�t/�2m�0

2��−1/2exp�− �x − x0�2/�2�0�2 + ik0�x − x0� − i�k0
2t/�2m�

1 + i�t/�2m�0
2� � . �5.6�

We use parameters comparable to those of Ref. �8�. We
set �=1 and m= 1

2 . The coordinate range we take is from
−0.5 to 1.5 rather than from 0 to 1 since over the smaller
space the normalization of the packet is not as precise as we
require because the tails of the Gaussian are nonzero outside
the �0,1� interval. We choose �0=1/20, k0=50�, �t
=2��x�2, and allow as much time as it takes the packet to
travel from x0=0.25 to around 0.75. For the final position the
numerically calculated wave function is compared to the
analytic one and e2 is determined. In Table IV we list some
of the computed results. We observe that the traditional CN
method �M =1 and r=1� has a low precision and that using
greater J �smaller �x� results in modest gain in precision. By
using higher-order time formula one can make significant
gain in precision �seven orders of magnitude� with no in-
crease in computational time compared with that of Ref. �8�.
�Compare the first row to the last two rows of Table IV.�
Rows 5–9 of Table IV illustrate the transition from less pre-
cise to more precise solutions. It is consistent with the find-
ing of the authors of Ref. �5� who use an M =2, r=3 method
and obtain two orders of magnitude improvement of the re-
sults of Refs. �1,3�. The results are sensitive to surprisingly
high orders of �x and �t.

Another test using wave-packet scattering to show the ef-
ficacy of the higher-order approach is scattering from a po-
tential. Rather than using the square barrier of Ref. �8�, we
consider the repulsive Pöschl-Teller type potential �24,25� of
the form

V�x� =
�2

2m

�2��� − 1�
cosh2 �x

. �5.7�

Since this potential does not have discontinuities the im-
proved CN method works well with it. The transmission and
reflection coefficients are known analytically. We can also
compute them by considering the wave packet Eq. �5.5� in-
cident on the potential. Over a sufficiently long time the
wave packet will have interacted with the potential and trans-
mitted and reflected packets emerge and travel away from
the potential region. At that point we can calculate the prob-
abilities of the particle represented by the packet on the left
and on the right of the potential; these probabilities corre-
spond to the transmission and reflection coefficients provided
the packet is sufficiently narrow in momentum space. This
means that one needs an initial packet which is wide in co-
ordinate space. In our calculation we choose �=1, �=2.5,
m=1, and �0=10. This gives a spread in the incident
momentum-space wave packet of �k=0.05. The width in mo-
mentum space of the reflected and transmitted wave packets
also has this value. The domain of the x coordinates is from
−300 to +300 and the initial position of the packet is at x0
=−150 to ensure that there is no overlap of the initial packet
and the potential. We find good agreement between the trans-
mission and reflections probabilities determined by plane-
wave scattering approach and the time-dependent calculation
as shown in Fig. 3.

C. Long-time behavior of decay of quasistable system

There are few analytically solvable models of the time
evolution of unstable quantum systems �26,27�. Realistic
systems need to be solved numerically. Long-time calcula-
tions are required for systems which require both nuclear and
atomic time scales such as ionization and bremsstrahlung
due to radioactive decay of the nucleus of an atom �2,3,5�. To

TABLE IV. Summary of computational parameters used to cal-
culate the propagating free packet and compare it to the analytic
wave packet.

M r J e2 CPU time

1 1 2000 9.418�10−2 2.20

4000 2.189�10−2 18.04

8000 5.368�10−3 151.92

16000 1.336�10−3 1287.8

2 2 2000 3.018�10−4 5.99

3 3 2000 1.321�10−6 12.57

4 4 2000 6.577�10−9 22.64

5 5 2000 3.648�10−11 37.13

6 6 2000 8.437�10−13 56.05

10 10 440 3.606�10−9 2.12

20 20 260 4.542�10−9 2.51
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study the short-time anomalous power law behavior of the
decay and the long-time inverse power law behavior the
method of this paper is appropriate. This is especially rel-
evant because of the recently observed violation of the
exponential-decay law at long times �28�.

To illustrate the numerical method discussed in this paper
as applied to decaying systems let us consider a variant of
the model with a �-shell potential �9�, but with the � function
replaced by a gaussian. Thus in the S partial wave of a
spherical system the potential is

V��� =
�

w��
exp�− �� − a�2/w2� , �5.8�

where � is the radial coordinate. This potential reduces to the
�-shell potential, V����=����−a� when w→0. For small but
finite values of w this potential leads to scattering results
which are good approximations of those of the �-shell inter-
action �35�. Initially the quantum system is in the state

���,0� = �2/a sin���/a� . �5.9�

In our example we take �=1, �=3, m= 1
2 , a=1, and w

=0.10. Using the numerical method of this paper, including
the modification of matrix A as described in Sec. IV B to
take care of the boundary conditions at �=0, we determine
the wave function at later times, i.e., ��� , t�. From that we
obtain the nonescape probability, as a function of t, P�t�
=�0

a���� , t��2d�, which is shown in Fig. 4. It clearly shows
the exponential decay region in time, the inverse power law
behavior for long times, the deviation from exponential de-
cay at short times, and the transition regions �9�.

The quadratic short-time behavior is seen in Fig. 4 as is
the inverse power law behavior at long times �29�. Remark-
ably the decaying system can be studied in this manner for a
time exceeding 30 half-lives. In Fig. 5 we plot the square of
the absolute value of the wave function at times t=5, 10, 15.
Notice that the wave function �packet� has three distinct re-
gions: a precursor due to energy components of the initial

wave function larger than that associated with the exponen-
tial decay, the main packet which corresponds to the expo-
nential decay at the resonance energy, and the follower,
which is a small blip that stretches in time �travels more
slowly� and is due to energy components in the initial wave
function which have lower energy that the resonance energy.
If the maximum spatial coordinate, which is set at 800 for
this calculation, were set at a smaller value, say 400, then
one observes a fuzziness in the precursor of the right-most
wave function. This can be attributed to the finite space in
which the wave packet travels so that the fast precursor has
been partially reflected from the right boundary and inter-
feres with the wave front of the main wave packet. The nu-
merical parameters for this calculation are ��=0.1, �t
=0.02, r=20, and M =20.

VI. REMARKS

The generalized CN method that we have presented in
this paper gives many orders of magnitude improvement in

FIG. 3. �Color online� The transmission and reflection coeffi-
cients as a function of k when �=1, �=2.5, m=1, and �0=10. The
subscript “wp” indicates that the coefficients are obtained from the
emerging wave packets. The quantities without subscripts are cal-
culated using the time-independent method.

FIG. 4. �Color online� The nonescape probability as a function
of time for the interaction with �=3, a=1, and w=0.10. We also
take �=1 and m= 1

2 .

FIG. 5. �Color online� The square of the absolute value of the
wave function as a function of � at times t=5, 10, 15 for the same
parameters apply as in Fig. 4. The inset gives the t=0 graph as well
as the scaled potential, V1���=V��� /8.
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the precision of the results and several orders of magnitude
in the computational time required to obtain the results.
Clearly, since this method enhances the efficiency of the nu-
merical calculations, it can be a significant tool for studying
time-dependent processes. It goes beyond the improvement
of Ref. �5� in a systematic way. It also is an advance over the
method of Ref. �18�, since the Numerov method has an error
O(��x�6), and it is difficult to see how it can be generalized
systematically to higher-order spatial errors. The generalized
time evolution algorithm can be applied to Moyer’s �18�
method.

We have applied the method for r and M up to and in-
cluding 20 for both. Having achieved significant improve-
ments with these values of r and M we did not consider
larger values although there does not seem to be a practical
reason that this cannot be done. Although the approach
seems to saturate at r around 10 �see Table III�, there is no
visible saturation in the time-evolution part of the problem.
One would expect higher orders of spatial errors to be sig-
nificant when the wave function and/or the potential has
large spatial fluctuations. Even so, at r=7 we are using a
15-point formula for the second-order spatial derivative, and
it is surprising that a smaller number of points in the formula
is not sufficient for optimal results in this case. It should be
noted that the higher order method as discussed in this paper
are suitable only for well-behaved, sufficiently differentiable
solutions; these occur when the potential function is well
behaved. As the authors of Ref. �10� point out for singular
functions higher-order methods do not necessarily lead to
greater accuracy.

The method given in this paper applies to time-
independent Hamiltonians. The authors of Refs. �19,20� in-
dicate how the CN method �for M =1� may be generalized to
higher values of M for time-dependent Hamiltonians. They
present an explicit example for M =2. Whether one can sys-
tematically and explicitly go to larger and arbitrary values of
M requires further investigation.

It should be noted that in this paper we consider primarily
one-dimensional systems, but the method applies equally
well to partial-wave equations of two-or three-dimensional
systems. The study of the decaying quasistable state is an
example of the latter.

An interesting avenue to investigate further is the impact
that this approach may have on two-or three-dimensional
systems, where the number of variables involved is equal to
the dimension. The Peaceman-Rachford-type approach �30�,
also known as the alternating-direction implicit method, of
factoring the approximation of the time evolution operator
may apply as it did in Refs. �14,31� or more recently in, for
example, Refs. �32,33�. Using the Crank-Nicolson method
the authors of Refs. �14,31� show that in two dimensions the
kinetic energy parts of the evolution operator factorizes.
Whether such factorization can be generalized in the spirit of
the method of this paper is under investigation. Calculations
on one-dimensional multichannel systems indicate that this
approach also leads to substantially greater efficiencies.

Preliminary studies with the Numerov spatial integration
scheme �18� and the generalized time evolution as described
in this work indicate that significant improvements occur if
one incorporates appropriate changes in the spatial step size
for different regions of space. This is important in the case of
discontinuous potentials and potentials that have great varia-
tion in some region and little or no variation in other regions.
Furthermore, it is well known that the wave packet has large
fluctuation in a �short-range� potential region and little varia-
tion in the asymptotic regions. A great savings in computa-
tional time can be achieved by using different space-step
sizes in the different regions. One needs to investigate
whether such variable step size can be incorporated in the
generalized spatial integration scheme of this paper. The ap-
proach that dealt with the discontinuous first-or second-order
derivative in this paper and Ref. �22� is worth exploring. We
intend to study this in the future.
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